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ABSTRACT 

Two non-destructive methods for elastic and 
piezoelectric parameter estimation in active plate 
structures with surface bonded piezoelectric 
patches are presented. 

The first of these solves the inverse problem 
through gradient based optimization techniques, 
minimizing the difference between experimental 
and numerical finite element eigenfrequencies for 
a test plate. Such minimization is conducted with 
FAIPA, a non linear interior point algorithm. 

The second method relies on building a 
metamodel of the inverse problem, using artificial 
neural networks (ANN). The training data set is 
obtained through the same numerical model as in 
the first approach. The simulation of the network 
is then used with the experimental eigenfrequecy 
data set in order to produce an estimate for the 
material parameters. 
Results from both approaches are compared and 
discussed through a simulated identification  

 
INTRODUCTION 

The need for accurate mechanical and 
piezoelectric parameters in modeling and analysis 
of active laminated plate type structures has 
become a major concern in active control 
applications. Traditional estimates based upon 
engineering tables provided by manufacturers are 
not always reliable for some of these applications, 
due to substantial variability among samples and 
dynamic ranges of interest and, more important, 
when such products are combined as components 
in an active composite material configuration, the 

effective values of such parameters are usually 
found to be quite different. 

To address these issues we present two non 
destructive methods for parameter estimation in 
active plate structures with surface bonded 
piezoelectric patches and try to establish a 
comparison between the two approaches to the 
inverse problem: gradient based optimization 
techniques and metamodeling techniques, namely 
through the use of artificial neural networks. 

In both techniques, the system response used 
was a set of undamped experimental free 
vibration natural frequencies. Thus, a numerical 
model capable of reproducing the response of the 
physical system is of paramount importance for 
both approaches. This numerical model is a finite 
element higher order laminated plate model that 
includes the piezoelectric effect [1]. 

This work is a generalization of previous 
works that used gradient optimization in single or 
multimaterial laminate configurations [2, 3, 4], 
and included identification of piezoelectric 
parameters [1], and it has the innovative aspect of 
applying ANN to estimate elastic and 
piezoelectric parameters in active laminates, using 
global response quantities such as natural 
frequencies of free vibration. 

Elastic parameter estimation techniques have 
been proposed by several authors. An assessment 
of different approaches on eigenfrequency and 
optimization-based identification methods for 
estimation of mechanical properties on composite 
laminated plates is available in [5]. Other 
eigenfrequency-based methods for identification 
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of elastic constants on laminated composite 
materials include methods based on response 
surfaces [6] and the use of model updating 
techniques [7]. Another class of inverse methods 
for estimation of elastic stiffness parameters in 
composite structures is based on ultrasonic and 
wave propagation measurements along with 
optimization techniques where, more recently, 
genetic algorithms have also been used [8, 9]. 
Artificial neural networks have also been used 
recently to inversely estimate elastic parameters 
of anisotropic laminated plates using surface 
displacement responses in a wave propagation 
simulation [10]. 

Regarding the estimation of both elastic and 
piezoelectric constants of surface bonded 
piezoelectric sensors and actuators in adaptive 
plate structures, gradient-based methods, among 
others, have been proposed [1, 11, 12]. 

 
NUMERICAL MODEL 

The numerical model used is a higher order 
finite element laminated plate model with cubic 
expansion of the in-plane displacements in the 
thickness coordinate and constant transverse 
displacement through the thickness, as shown in 
Equation (1) for the laminated plate of Fig. 1. 
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In (1), 0u , 0v  and 0w  are the in-plane 
displacements in the x, y, and z directions, t is the 
time variable and xθ  and 

yθ  are the rotations of 
normals to the midplane about the y axis 
(anticlockwise) and x axis (clockwise), 
respectively. The functions *

0u , *
0v , *

xθ  and *
yθ  are 

higher order terms in the Taylor series expansion, 
defined also in the midplane of the plate. 

Full details regarding the model development 
and implementation for dynamics can be found in 
[13], while its extension to account for the 
piezoelectric effect is described in detail in [1]. 
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Figure 1. Laminated plate in global reference 

system 
 
 
For each lamina (Fig. 2) in the laminate, the 

constitutive equations are represented in Equation 
(2), in the local principal material axes [14, 15]. 
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Figure 2. Orthotropic material lamina 
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In (2), σ  and ε  are the five component stress 

and deformation vectors, corresponding to the 
plane stress situation, e  is the piezoelectric 
coefficient matrix, E  and D  are the electric field 
and electric displacement vectors, respectively, ∈  
is the dielectric matrix and Q  is the elastic 
material coefficient matrix which is expressed in 
terms of the following non dimensional elastic 
parameters: 
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where 12

2
120 1 EEν−=α . 

Applying a rotational transformation from the 
principal material axes ),,( 321 xxx  to the global 
reference system ),,( zyx , one obtains the 
constitutive equations in this later coordinate 
system [1]. 

For a laminate made of several composite and 
piezoelectric material laminae, the constitutive 
equations are obtained after integration is carried 
out in the laminate thickness coordinate. The 
equations of motion for free vibration are then 
obtained using the finite element method through 
an eight nodded serendipity plate element with 
nine degrees of freedom per node, corresponding 
to the terms in the expansion of the displacement 
field (1). As for the piezoelectric degrees of 
freedom, the electric potential variation is 
constant within each element’s piezoelectric 
layers. With these considerations in mind, one 
arrives at the following equation of motion at the 
element level: 
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where eu , eu&& , eφ  and eφ&&  are mechanical degrees 
of freedom and corresponding accelerations, 
element electric potential variation and 
corresponding second time derivatives, 
respectively. e

uuM  and e
uuK  are the element mass 

and stiffness matrices, respectively, 
corresponding to purely mechanical behaviour, 
while e

φφK  is the piezoelectric stiffness matrix and 
e
uφK  is the stiffness matrix that corresponds to the 

coupling between the mechanical and the 
piezoelectric effects 

Still at the element level, the electric degrees 
of freedom are condensed and considering 
harmonic vibrations, one obtains the eigenvalue 
problem: 

 
 0uMK =λ− e

i
e
uu

e
i

e )( *  (5) 

where e
iu  is the element eigenvector 

corresponding to the eigenvalue e
iλ  and 

eT
u

ee
u

e
uu

e
φ

−
φφφ−= KKKKK 1*  is the condensed element 

stiffness matrix. 
The global equilibrium equation is then 

obtained through assembly of the element 
equations: 

 
 0uMK =λ− ii )( *  (6) 
 

where *K  and M  are the global stiffness and 
mass matrices and iu  are the system eigenvectors 
corresponding to the eigenvalues iλ . 

In order to minimize errors associated with 
modeling boundary conditions, we are only 
concerned with completely free plates, thus a shift 
is applied to the global stiffness matrix in order to 
ensure positive definiteness [16]. 

 
PARAMETER ESTIMATION TECHNIQUES 

The two proposed parameter estimation 
techniques are described next. Both of these 
techniques rely on an experimental response of 
the active plate structure in the form of undamped 
natural free vibration frequencies. The gradient 
base optimization technique is an iterative 
procedure to solve the inverse problem, while the 
metamodeling technique approximates the inverse 
problem through an ANN metamodel. 

 
Gradient Based Optimization 

In this approach, the parameter estimation 
technique consists on minimizing the difference 
between the response of the physical system and 
the finite element numerical model that simulates 
the system response as a function of the elastic 
and piezoelectric coefficients. The response 
consists of a set of natural frequencies of free 
vibration of the plate, which are measured 
experimentally and then used to fit the 
corresponding response of the numerical model, 
thus determining the parameters for the best fit. 

The error estimator used in this work is of 
weighted least squares type: 
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where iλ

~  are the experimental eigenvalues, iw  
are weights used to express the confidence level 
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in each one of the experimental eigenvalues, and I 
is the total number of eigenfrequencies used. 

The problem is stated as the constrained 
minimization of the error estimator (7), where the 
constraints are imposed in order to insure positive 
definiteness of the constitutive elastic matrices of 
all materials: 
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In Equation (8), b is the vector of design 
variables, whose components can be non 
dimensional elastic parameters (3) or 
piezoelectric constants 31e  and 32e  in (2), g is the 
constraint set imposed in order for each material’s 
constitutive matrix to remain positive definite and 
bl and bu are the side constraints imposed on the 
design variables. 

The numerical optimization technique 
integrates methods for unconstrained problems, 
based on Gauss-Newton algorithm with the 
Feasible Arc Interior Point Algorithm (FAIPA) 
for constrained optimization [17, 18]. 

Due to the different order of magnitude of the 
sensitivities of the eigenfrequencies to different 
types of possible design variables (elastic, 
piezoelectric and dielectric), a three phase 
identification procedure is used [1]. In the first 
stage, only the elastic parameters associated with 
the base composite laminate are identified. Next 
the sensors and actuators are exteriorly bonded to 
the surfaces of the laminate and the second phase 
of the identification takes place for the estimation 
of the elastic parameters of the piezoelectric 
material, in closed circuit conditions (in order to 
eliminate the piezoelectric effect). Finally, the 
third phase consists in identifying only the 
piezoelectric parameters, in open circuit, noting 
that the dielectric parameters must be determined 
experimentally before this third phase, using well 
established procedures described in ASTM D150-
98 [19]. 

 
Metamodeling Approach 

In this approach a two hidden layer ANN is 
employed to model the inverse problem, as shown 
in Fig. 3. The inputs to the network are the 
undamped natural frequencies of free vibration of 
the plate and the outputs are the elastic or 
piezoelectric properties of the laminate. If the 
elastic properties are to be estimated, then the 

number of output neurons is six, corresponding to 
the six independent elastic constants. On the other 
hand, if the parameters to be estimated are the 
piezoelectric coefficients, then the number of 
output neurons is only two. 

 
 

 
Figure 3. The two hidden-layer ANN model 
 
 
According to [20, 21] two hidden layers are 

sufficient to solve this kind of inverse problem 
and the number of neurons in each hidden layer 
was chosen to be three times the number of inputs 
and outputs, respectively [22]. 

The ANN can be viewed as a non-linear 
mapping between the frequency space and the 
space defined by the material parameters to be 
estimated. Each neuron is the information 
processing unit represented in Fig. 4. 

 
 

 
Figure 4. Model of a neuron 

 
 

where 
kjw  is the weight associated to input 

jx  of 
neuron k, kB  is the bias associated with the same 
neuron and f is the activation function of the 
neuron. Thus, the output of neuron k can be 
expressed through: 
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In this work the activation functions are of the 
log sigmoid type for neurons in the two hidden 
layers and of the pure linear type for neurons in 
the output layer. 

The output of the network can be expressed as 
the non linear mapping (10), where W is a matrix 
of weights and biases, Y is the vector of outputs 
(elastic or piezoelectric parameters) and X the 
vector of inputs (natural frequencies). 

 
 ),( XWfY =  (10) 
 
In designing such non linear mapping the 

parameters to be adjusted are the weights and 
biases in matrix W. This is done through a 
supervised learning process by feeding the 
network with pairs of known inputs and 
corresponding target outputs, produced by the 
finite element numerical model, and adjusting the 
weights such that the network produces outputs as 
close as possible to the known ones. This is 
defined as an unconstrained minimization 
problem and the Levenberg-Marquardt method 
was used to carry out this minimization, using a 
mean square error estimator. 

The training data set for the elastic constants 
estimation was established by using the concept 
of orthogonal arrays, thus reducing the full-
factorial dimension of these data sets from 56 to 
25. This corresponds to a L25 orthogonal array 
for 6 factors (elastic parameters) and 5 levels for 
each factor [23]. Both inputs and outputs were 
normalized to unity to avoid saturation. 

After training is complete, the ANN can be 
used to estimate the material constants, by feeding 
it with the experimental eigenfrequencies. As 
suggested before, the three phase method was also 
employed in this approach and the full-factorial 
dimension of the training data set was employed 
for the third phase, since there are only two 
parameters to estimate in this last phase 
(piezoelectric constants). 

 
NUMERICAL APPLICATION 

In this section we present simulations of the 
two parameter estimation techniques described 
previously, which are denoted by FAIPA and 
ANN in this section. The plate is made of a 
Gr/Epoxy laminate with stacking sequence [90º, 
0º, 90º] (w.r.t. horizontal). Each ply of Gr/Epoxy 
is 1 mm thick. The plate is instrumented with an 
array of nine pairs of equally spaced 60 mm × 40 
mm × 1 mm PZT-4 patches bounded to the top 

and bottom surfaces of the laminate, as shown in 
Fig. 5. 

 
 

 
Figure 5. Plate with surface bonded collocated 

patches (dimensions in mm) 
 
 
Results of the simulations conducted using the 

first sixteen natural frequencies and a finite 
element mesh of 20×20 elements are presented in 
Table 1 and 2, along with the true properties of 
each material. All properties are layer properties 
given in the layer material axes and ρ represents 
mass per unit volume of each material. 

 
 

Table 1. Material Properties for Gr/Epoxy 
Identified  True FAIPA ANN 

E1 [GPa] 132.4 132.4 132.0 
E2 [GPa] 10.8 10.8 10.9 
G12 [GPa] 5.7 5.7 5.7 
G13 [GPa] 5.7 5.8 4.5 
G23 [GPa] 3.6 5.5 2.8 
ν12 0.24 0.22 0.30 
ρ [kg/m3] 1578   

 
 

Table 2. Material Properties for PZT-4 
Identified  True FAIPA ANN 

E1 [GPa] 81.3 79.8 82.8 
E2 [GPa] 81.3 79.8 81.3 
G12 [GPa] 30.6 30.0 31.2 
G13 [GPa] 25.6 33.2 30.2 
G23 [GPa] 25.6 32.9 32.3 
ν12 0.33 0.30 0.36 

31e  (N/Vm) -5.2 -5.4 -4.8 

32e  (N/Vm) -5.2 -5.0 -5.9 

33∈  (10-9 F/m) 11.5   
ρ [kg/m3] 7600   
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In Tables 3, 4 and 5 the sixteen natural 
frequencies and residuals obtained after 
identification are presented for each one of the 
three identification phases. The residuals are 
defined as: 

 
 100~)~( ×ωω−ω= iiiir  (11) 

 
where iω

~  and iω  are the experimental and 
numerical natural frequencies, respectively. 

 
 

Table 3. Natural frequencies and residuals 
after identification (Phase 1) 

ir  [%] 
i iω

~  [Hz] 
FAIPA ANN 

1 88.31 0.00 -0.07 
2 93.81 -0.05 0.16 
3 203.65 0.00 -0.02 
4 258.44 -0.03 0.15 
5 374.25 -0.01 0.05 
6 506.01 -0.01 0.11 
7 618.57 -0.01 0.09 
8 628.70 0.00 -0.09 
9 652.39 0.01 -0.12 
10 729.76 -0.00 -0.03 
11 835.33 0.02 0.08 
12 870.54 -0.02 0.11 
13 943.39 0.01 0.10 
14 1082.52 -0.00 0.09 
15 1247.62 0.03 0.11 
16 1349.99 0.05 0.07 

 
 

Table 4. Natural frequencies and residuals 
after identification (Phase 2) 

ir  [%] 
i iω

~  [Hz] 
FAIPA ANN 

1 112.52 -0.03 0.10 
2 161.29 0.03 -0.14 
3 306.93 -0.01 0.11 
4 357.03 0.00 -0.11 
5 602.56 -0.02 0.06 
6 630.57 -0.03 -0.05 
7 674.62 0.00 0.02 
8 845.68 -0.00 -0.32 
9 864.55 -0.10 0.17 
10 924.29 -0.02 -0.15 
11 1183.96 0.00 -0.05 
12 1266.06 0.03 -0.20 
13 1333.78 -0.02 -0.06 
14 1356.51 0.05 -0.10 
15 1619.26 0.06 -0.13 
16 1668.57 0.06 -0.01 

Table 5. Natural frequencies and residuals 
after identification (Phase 3) 

ir  [%] 
i iω

~  [Hz] 
FAIPA ANN 

1 112.60 -0.03 0.12 
2 161.33 0.02 -0.14 
3 307.11 -0.01 0.13 
4 357.21 -0.01 -0.10 
5 603.36 0.02 0.01 
6 630.87 -0.05 -0.04 
7 675.43 0.02 -0.01 
8 847.47 0.01 -0.25 
9 866.39 -0.11 0.18 
10 926.29 -0.03 -0.08 
11 1185.63 -0.00 0.00 
12 1267.72 0.02 -0.18 
13 1335.96 -0.03 -0.02 
14 1358.75 0.05 -0.09 
15 1621.53 0.06 -0.08 
16 1671.23 0.09 -0.05 

 
 
The initial values for material parameters in 

the gradient based optimization approach are 
presented in Table 6. These values were chosen to 
be in the range of typical values for each type of 
material. 

 
 
Table 6. Initial values for material parameters 
in gradient based optimization approach 

 Gr/Epoxy PZT-4 

E1 [GPa] 100.0 100.0 
E2 [GPa] 15.0 100.0 
G12 [GPa] 6.0 41.0 
G13 [GPa] 6.0 41.0 
G23 [GPa] 6.0 41.0 
ν12 0.3 0.3 

31e  (N/Vm)  -10.0 

32e  (N/Vm)  -10.0 

 
 
As for the metamodeling approach, ANN 

weights and biases were randomly initialized. As 
a result of this random starting point, optimized 
weights and biases can vary substantially, 
although the network always predicts the material 
parameters correctly with very slight variations. 

 
CONCLUSIONS 

Two different approaches to the problem of 
estimating elastic and piezoelectric properties in 
active plate structures have been presented along 
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with the results of a simulated identification case 
study. 

From direct observation of the results, one can 
conclude that both techniques provide reasonable 
estimates for the parameters, although the ANN 
technique presents slightly higher residual levels. 

Due to the low thickness to length ratio of the 
test specimens, the transverse shear modulus G13 
and G23 are difficult to identify since the 
transverse shear is not noticeable. 

Regarding the identification of the 
piezoelectric coefficients, some error propagation 
occurs because for phases 2 and 3 the identified 
results from previous phases are used, as in a real 
identification process. This is especially more 
evident for the ANN method. 

In both approaches, initial values for the 
design parameters/weights do not influence 
results in a noticeable way, although this can 
happen if one does not use enough experimental 
natural frequencies. Also, when using the ANN 
approach, care must be taken in order to avoid 
overfitting by properly adjusting the size of the 
network. 

Comparisons of execution times between the 
two methods show that ANN takes from about 1.2 
to 2.4 times more computer time than FAIPA. 
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